

Liquified Carbon Dioxide – CO2(liq) Improvement of the carbon footprint and GHG

Hitachi Zosen INOVA

\star CO₂ usage & Market simple view

- \star CO₂(liq) & Market simple view from AD German case
- \star CO₂(liq) from AD plant biogenic CO₂(liq)
- \star CO₂(liq) Costs view
- \star CO₂(liq) HZI Model
- \star CO₂(liq) Technical Info

CO₂ usage

Chemical industry

- Urea production
- Manufacture of drugs / pharmaceutical products
- Methanation (Power-to-Gas)
- Formaldehyde
- Extracting agents

Food & beverage industry

- Carbon dioxide
- Alcohol fermentation (production of beers and sparkling wines)
- Inert gases in foodstuffs
- Cooling and refrigerant agents
- · Decaffeinating of coffee

Plastics

- Polyurethane foam
- Polycarbonate (substitute glass)
- Others in development

Building and construction materials

- Concrete and cement
 - Asphalt
 - Hardwood

Dry ice and cooling

- Dry ice
- Cleaning with dry ice $/ CO_2$
- Refrigerant gases in cooling systems

Industrial gases & liquids

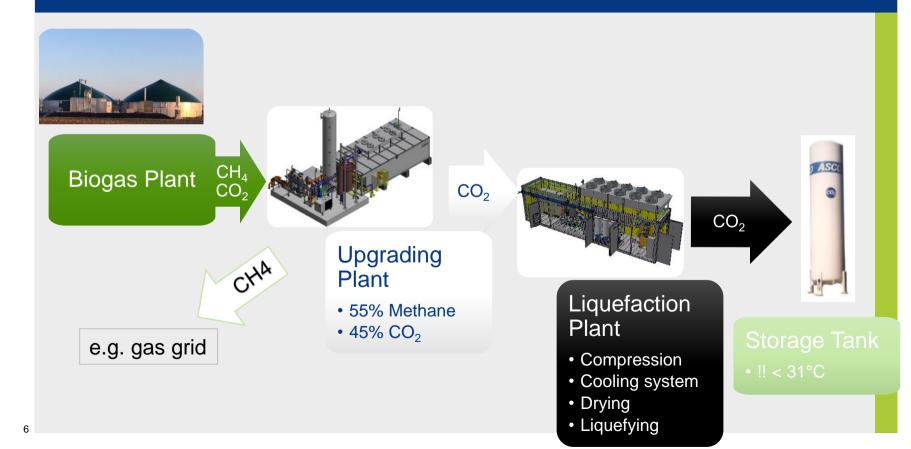
- Oil production (tertiary recovery)
- Cleaning of oil deposits
- Water upgrading
- Cleaning fluids for semiconductor industry
- Cellulose and paper processing

Fuels

- Fuel production
- Renewable methanol production
- Algae based fuel

Others

- · Growing/culturing (Greenhouses, cultivation of algae)
- · Pressure gas applications
- Welding technologies (steel industry)

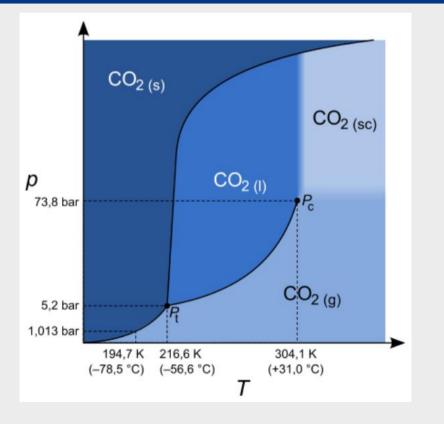


CO₂(liq) from AD plant – biogenic CO₂(liq)

CO₂ sources and comparison

	Agricultural biogas	Biogas from bio-waste	Flue gases
Description	Fermentation of corn, beets, other agricultural products	Food waste; organic waste from agricultural; organic waste from industries	Flue gas from burning wood, coal, oil or gas
Flow CO2	50 – 1000 m³/h	50 – 1000 m³/h	50 – 10.000 m³/h
Contamitants	Small amount of VOC- mostly Ketones Sulfur (H2S)	Huge amount of VOC (Ketones, Terpenes, Alcohols) Sulfur (H2S)	Acetaldehyde; Formaldehyde; light hydrocarbons; NOx; SO2; Air

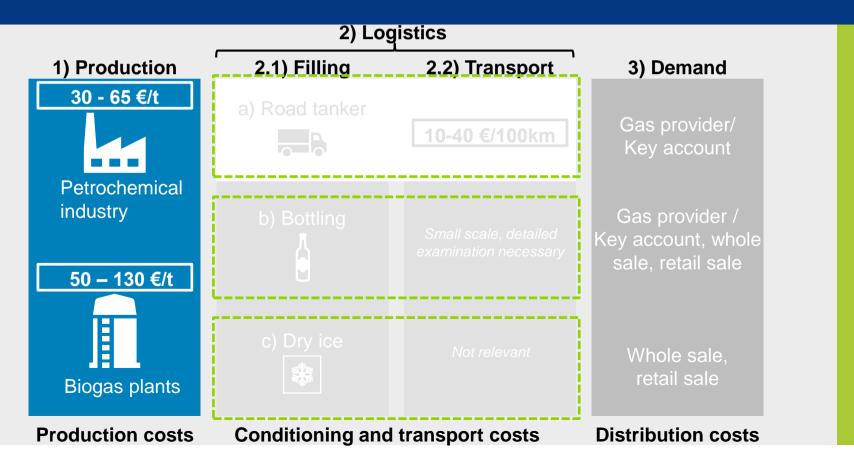
The sources of the inlet gas will challenge the production costs of the CO₂

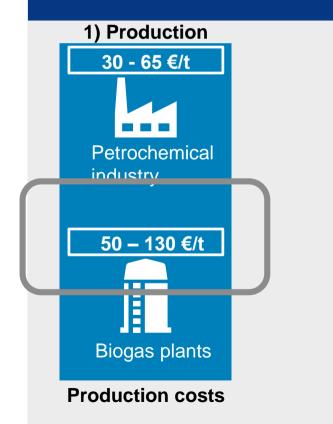


Liquefaction pressure > 5 bar(a)

- ★ compression required
- ★ temperature rises

Liquefaction Temperature Range:


- ★ -56,6° C up to +31° C
- ★ cooling necessary


CO₂ Liquefaction – Costs view

10

$CO_2(liq) - Costs view$

The required quality of the CO₂ is the key factor for the production costs

3) Quality

Specific analytical equipment

Guideline for required $CO_2(liq)$ purities

component	beverage grade (ISBT standard)	dry ice	Medical and pharmaceutical
CO ₂ purity	≥ 99.9 %		
moisture	≤ 20 ppm		
O ₂	≤ 30 ppm	In case of utilisation in	
СО	≤ 10 ppm		
NH ₃	≤ 2.5 ppm	food industry -> EIGA/ISBT standard.	
NO/NO ₂	≤ 2.5 ppm each		
non-volatile residue	≤ 10 ppm (wt)		Niche market with even
non-volatile organic residue	≤ 5.0 ppm (wt)		higher standards
Phosphine (PH ₃)	≤ 0.3 ppm		
total volatile HC	≤ 50 ppm		
Acetaldehyde	≤ 0.2 ppm	Different applications	
aromatic HC	≤ 0.02 ppm	similar or lower in comparison to	
total sulfur (H₂S/COS)	≤ 0.1 ppm	EIGA/ISBT	
SO ₂	≤ 1.0 ppm		
specials	no color or turbidity in water		
	no odor; no taste in water		

CO₂(liq) – Uplift for GHG

$$E = \sum_{1}^{n} S_n \cdot \frac{(e_{ec,n} + e_{td, feedstock, n} + e_{l,n} - e_{sca, n})}{1} + e_p + e_{td, product} + e_u - e_{ccs} - e_{ccr}$$

+

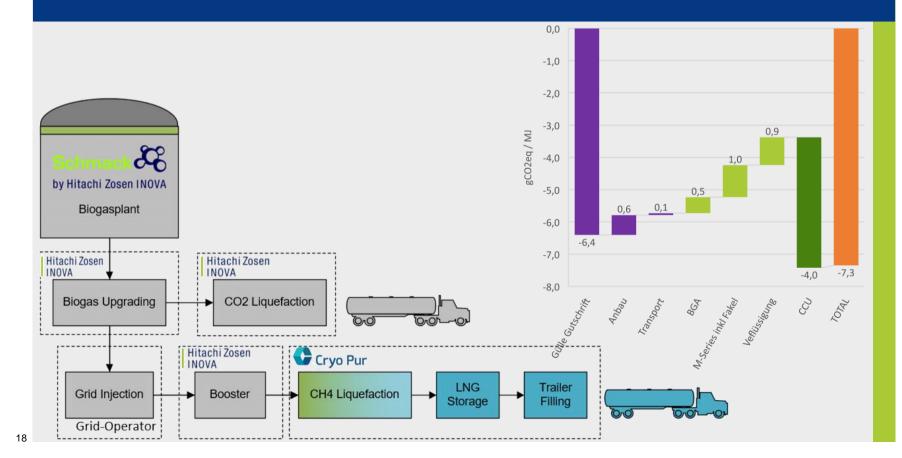
Field Emissions Food Crops

 e_{ec} : Field emissions e.g., due to use of fertilizer e_{In} : Improved agrigulture practice e_{td} : transport of substrate e_{sca} : savings from improved agricultural managemen

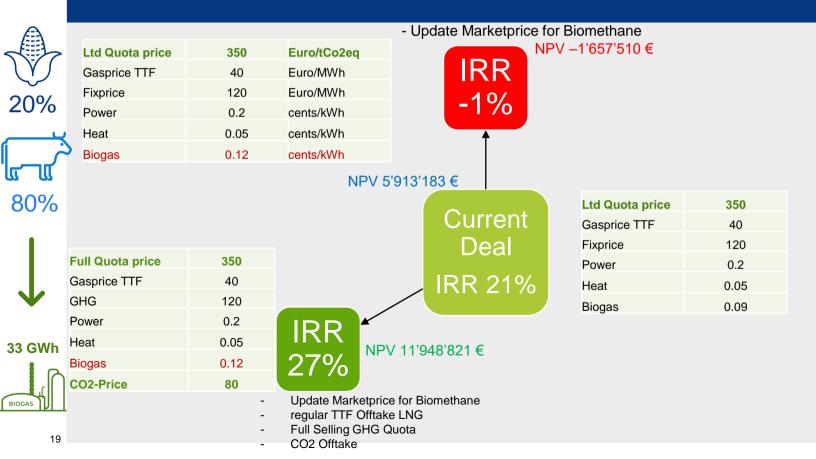
Processing

 e_{p1} : Biogas production e_{p2} : Methan upgrading e_{p3} : Liquefaction e_{ccr} : Carbon Capture and Replacement)

Distribution

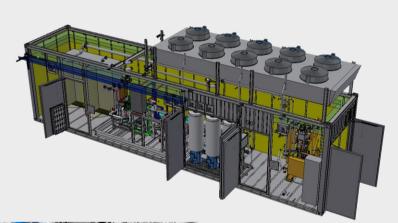

+

 e_{td} : Distribution of LBG



CO₂(liq) – Uplift for GHG

$CO_2(Iiq) - Uplift for GHG$



HZI Models CO₂(liq)

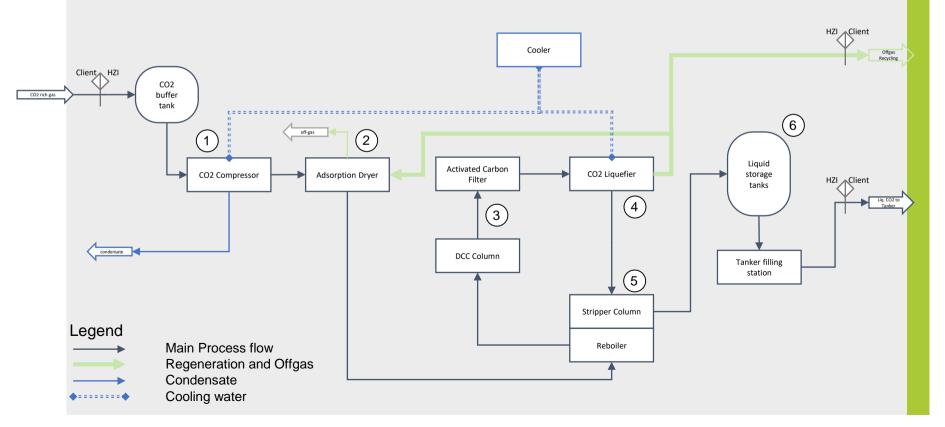
Туре	Model S	Model M
Plant Output (kg _{co2} /h)	300-500	600-1000
Plant Input (Nm³-CO2/h	130-250	260-500
Design	Single Container Design + BOP	tbd
Capture Rate CO2	85-95%	85-95%
Power Demand	210-250 kWh _e /t _{CO2}	< 250 kWhe/tCO2
Main dimensions (L x B x H)	13 x 16 x 11 m	tbd
Gas Quality	Off-gas Upgrader	Off-gas Upgrader
CO2 Grade	EIGA / ISBT	EIGA / ISBT
Business Model	EPC / BOO	EPC / BOO
CAPEX	2'm€	tbd
Technical Availability	97%	95%
PAC	NTP + 13 Months	NTP + 13 Months

Nesselnbach – CO2(liq) Model S500

Containerised modular system assembled in Germany

Process Description

Operating Pressure: ~ 18 bar(g)


→ Liquefaction @ ~ -35 °C

Process steps:

- (1) Compression
- 2 Drying (water removal)
- (3) Contaminant removal (DCC + AC-Filter)
- 4 Liquefying (condensing CO_2)
- (5) Stripping (removal of non condensables: N_2 , O_2 , CH_4)
- 6 Storage

Process Description

Process Description – Compression and Drying

Oil-free compressor

- 2-stage compressor
- Water-cooled
- Condensate removal

Adsorption-dryer

- Dew point -40°C
- 2 vessels for batch operation
- Regeneration with off-gas (non condensables)

Process Description – Contaminant removal

DCC-Column <- Required due to VOC

- First stage cleaning
- for higher contaminations
- Counter flow with liquid CO₂
- Lower yield of liquid CO_2 (reduced by ~10%)
- No problems with contaminants that impact the product quality

Activated Carbon

- Second stage cleaning
- For low contaminations

Process Description – Liquefying

Pre-cooling the CO₂ with column reboiler (stripping)

- U-tube bundle design
- Heat supply for stripping column

Refrigeration Unit for cooling

- R449A based (other refrigerants upon request)

Liquefying

- Cooling with plate heat exchanger
- Collecting vessel for purging non condensables

Process Description – Stripping

Stripping Column

- Stripping gas: boiling CO₂ (heat supply: reboiler)
- Liquid CO₂ flows from top to bottom
- Dissolved gases (CH₄, O₂, N₂) removed

Product with high purity

According to ISBT & EIGA

Offgas containing CO₂ and non condensables

- Can be recycled before the upgrader, depending on quality of inlet gas

Process Description – Storage

Vacuum-insulated Storage Tanks

vertical or horizontal

Minimum 2-tank system to achieve batch production (mandatory for ISBT)

Optimum: > three tanks

Pressure to be kept in vessels > 5,2 bar(a)

- Risk of dry ice
- Possible damage or downtime

Hitachi Zosen

Thank you